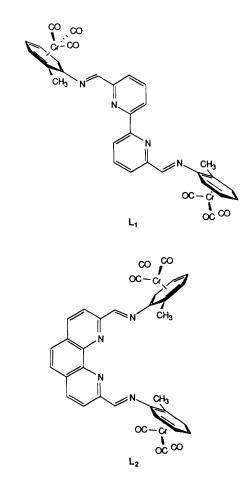
Unexpected Copper(1) Complexation Behaviour observed in the Synthesis of Novel Polynuclear Chromium(0)–Copper(1) Complexes

Raymond Ziessel^a and Jean Suffert^b

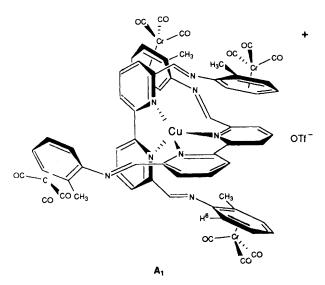
Institut Le Bel, Université Louis Pasteur, URA 422 du CNRS, 4, rue Blaise Pascal, 67000 Strasbourg, France
 EHICS, URA 466 du CNRS, 1, rue Blaise Pascal, 67000 Strasbourg, France

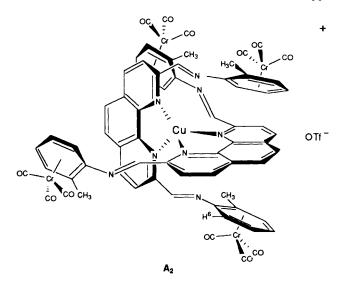

A novel series of penta- and hexa-nuclear chromium(0)-copper(1) complexes, displaying either a two ligand to one copper (thermodynamic product) or a two ligand to two copper (kinetic product) ratio have been synthesized and their properties studied.

Mononuclear copper(I) phenanthroline complexes have been shown to display interesting photophysical properties in both their ground and excited states.¹ With the exception of some halo, carbonyl, or phosphine complexes² and one phenanthroline species,³ all copper(I)-bipyridine or -phenanthroline complexes display a one to two copper to ligand stoicheiometry in a pseudo-tetrahedral geometry. Such complexes have been used recently to prepare metallocatenates,⁴ helicates,⁵ and a trefoil knot.⁶ To our knowledge, however, heteropolynuclear copper(I) complexes have not been studied so far.

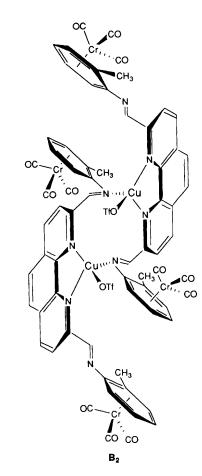
We report here the synthesis, characterization, and spectroscopic properties of novel penta- and hexa-nuclear complexes based on a new family of functionalized tweezer ligands L₁ and L_2 which combine 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) with two arenetricarbonylchromium complexes.^{7†} Copper complexes of these ligands were readily prepared. Reaction of the deep-orange ligand L_1 (2 equiv.) with $[Cu(CF_3SO_3)]_2 \cdot C_6H_6^8$ (0.5 equiv.) in dichloromethane, resulted in an immediate colour change to deep-violet, followed by precipitation of complex **B**₁ (81%; λ 541 nm, ϵ 14900 dm³ mol⁻¹ cm⁻¹). After purification of the mother liquor by column chromatography a second deep-red complex A₁ (14%; λ 462 nm, ϵ 10 400 dm³ mol⁻¹ cm⁻¹) was isolated. Following the same experimental procedure starting from L_2 complexes B_2 (56%; λ 560 nm, ϵ 8 970 dm³ mol⁻¹ cm⁻¹) and A_2 (42%; λ 490 nm, ϵ 10100 dm³ mol⁻¹ cm⁻¹) were isolated. Complexes A_1 and A_2 correspond by microanalysis to a 2:1 ligand to copper ratio while B_1 and B_2 are species containing a one ligand to one copper stoicheiometry. \$ A1 and A2 appear to be the thermodynamic complexation products whereas complexes B_1 and B_2 are the corresponding kinetic species (vide infra).

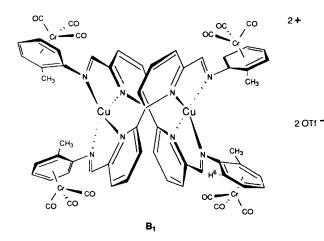
The ¹H NMR spectra of complexes A_1 and A_2 show an upfield shift of the H⁶ resonance signal of the arenechromium subunit by 1.5 ppm for A_1 and 1.6 ppm for A_2 . Such a characteristic shielding is attributed to the ring-current effect of the bpy or phen nucleus which is the result of the ligands being interlocked around the copper cation. Almost no change (compared to ligands L_1 and L_2) in the imine stretchings is observed in the IR spectra of complexes A_1 and A_2 indicating that no co-ordination of the imine occurs. The fast-atom bombardment (FAB) mass spectra of complexes A_1 and A_2 show molecular peaks at m/z 1431 and 1388. Spectroscopic studies as well as microanalyses provide strong evidence for the formulation of A_1 and A_2 as pentanuclear complexes.


Surprisingly, the ¹H NMR spectra of complexes B_1 and B_2 show only weak shielding of the H⁶ resonance signal of the arenechromium subunit, allowing us to propose a new type of complexation. Only one imine signal (deshielded by 0.15 ppm) is observed for B_1 in the ¹H NMR spectrum while in the IR spectrum the imine stretching frequency is shifted by 25 cm⁻¹ compared to the free ligand L_1 . This is consistent with Cu^I co-ordination as previously determined for Cu^I-Schiff's base complexes.⁹ The FAB mass spectrum of complex B_1 shows the molecular ion peak at m/z 1661 with an isotopic profile indicating two copper atoms and the absence of peaks at higher m/z which excludes a slipped polymeric structure. In the case of B_2 two different imine signals (one at a position



[†] The synthesis will be reported separately in full. It involves reaction of 2,2'-bipyridine-6,6'-dicarbaldehyde (J. E. Parks, B. E. Wagner, and R. H. Holm, J. Organomet. Chem., 1973, **56**, 53) or 1,10-phenanthroline-2,9-dicarbaldehyde (C. J. Chandler, L. W. Deady, and J. A. Reiss, J. Heterocycl. Chem., 1981, **18**, 599) with (o-toluidine)tricarbonylchromium (B. Nicholls and M. C. Whiting, J. Chem. Soc., 1959, 551) in refluxing benzene: L₁ (88%, FAB⁺ mass spectrum m/z 663 [M + H]⁺); L₂ (82%, FAB⁺ m/z 687 [M + H]⁺).


[‡] Complexes A₁, A₂, B₁, and B₂, isolated as diastereoisomeric mixtures, were characterized by ¹H NMR (200, 400 MHz), ¹³C NMR (50, 100 MHz), IR, UV-VIS, and FAB⁺ mass spectroscopy and gave satisfactory elemental analyses for C, H, and N.


J. CHEM. SOC., CHEM. COMMUN., 1990

close to that of L_2 and the second deshielded by 0.19 ppm) were observed in the ¹H NMR spectrum, while in the IR spectrum two different imine stretching frequencies of equal intensity (one being at the same frequency as ligand L_2 and the other shifted by 35 cm⁻¹), as well as a co-ordinated sulphonate group were detected.¹⁰ The FAB mass spectrum also gave a molecular ion peak at m/z 1649 with a pattern typical of the presence of two copper atoms. From these combined spectroscopic analyses it appears that the unexpected products **B**₁ and **B**₂ are the hexanuclear complexes containing: for **B**₁, two twisted bpy and two copper(1) cations, each co-ordinated to the imine of the bridge and to one pyridine of the bpy ligand; for B_2 , two copper(1) cations, each of which is chelated by one phen ligand and one imine of the second phen ligand.

Corey-Pauling-Koltun (CPK) molecular models of B_1 showed that a 2:2 copper: bpy ligand stoicheiometry is allowed only if a helical arrangement is adopted.¹¹ Owing to ligand rigidity the phen cannot twist and hence B_2 gives rise to a ladder complex. On dissolving B_1 and B_2 in CD₃CN, clean conversion to A_1 and A_2 (thermodynamic species) can be followed by ¹H NMR and UV–VIS absorption spectroscopy. Only A_1 and A_2 were isolated when the reaction was carried out in a more polar solvent.

If the bridge between the bpy or phen subunit and the arenetricarbonylchromium is NH, OCH₂, or SCH₂ none of the kinetic products is isolated. These observations corroborate the fact that B_1 and B_2 formation is feasible only when Cu^I-imine interactions are present.

Work in progress is aimed at the synthesis of the corresponding optically pure copper complexes as well as the preparation of new polyimine ligands based on, *e.g.* 1,8naphthyridine and 1,9,10-anthyridine in place of bpy or phen.

We acknowledge the Centre National de la Recherche Scientifique for financial support, A. Von Dorsselaer and R. Hueber for mass spectrometry experiments and fruitful discussions, and K. J. Watson and M. T. Youinou for helpful advice.

Received, 17th April 1990; Com. 0/01699C

References

M. W. Blaskie and D. R. McMillin, *Inorg. Chem.*, 1980, 19, 3519;
 B. T. Ahn and D. R. McMillin, *ibid.*, 1981, 20, 1427; N. Alonso-Vante, V. Ern, C. O. Dietrich-Buchecker, D. R. McMillin, P. A. Marnot, and J.-P. Sauvage, *Nouv. J. Chim.*, 1983, 7, 3;
 C. O. Dietrich-Buchecker, P. A. Marnot, J.-P. Sauvage, J. R. Kirchhoff, and D. R. McMillin, *J. Chem. Soc.*, *Chem. Commun.*, 1983, 513.

- S. Kitagawa and M. Munakata, *Inorg. Chem.*, 1981, 20, 2261;
 R. A. Roder, D. R. McMillin, M. T. Buckner, T. G. Matthews,
 D. J. Jr. Casadonte, R. K. Lengel, S. B. Whittaker, L. M. Darmon, and F. E. Lytle, *J. Am. Chem. Soc.*, 1981, 103, 5906;
 J. R. Kirchhoff, D. R. McMillin, W. R. Robinson, D. R. Powell,
 A. T. McKenzie, and S. Chen, *Inorg. Chem.*, 1985, 24, 3928.
- 3 M. Munakata, M. Maekawa, S. Kitagawa, S. Matsuyama, and H. Masuda, *Inorg. Chem.*, 1989, 28, 4300.
- 4 C. O. Dietrich-Buchecker, J.-P. Sauvage, and J. P. Kintzinger, *Tetrahedron Lett.*, 1983, 46, 5095; C. O. Dietrich-Buchecker, J.-P. Sauvage, and J. M. Kern, J. Am. Chem. Soc., 1984, 106, 3043; A.-M. Albrecht-Gary, C. O. Dietrich-Buchecker, Z. Saad, and J.-P. Sauvage, J. Am. Chem. Soc., 1988, 110, 1467 and references therein.
- 5 J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, and D. Moras, Proc. Natl. Acad. Sci. USA, 1987, 84, 2565; J.-M. Lehn and A. Rigault, Angew. Chem., Int. Ed. Engl., 1988, 27, 1095.
- 6 C. O. Dietrich-Buchecker and J.-P. Sauvage, Angew. Chem., Int. Ed. Engl., 1989, 28, 1896.
- 7 J. Suffert and R. Ziessel, J. Organomet. Chem., 1989, 359, C45.
- 8 J. K. Kochi and R. G. Solomon, J. Am. Chem. Soc., 1973, 95, 1889.
- 9 A. Toth, C. Floriani, M. Pasquali, A. Chiesi-Villa, A. Gaetoni-Monfredotti, and C. Guastini, *Inorg. Chem.*, 1985, 24, 648.
- A. L. Arduini, M. Garnett, R. C. Thompson, and T. C. T. Wong, Can. J. Chem., 1975, 53, 3812; P. L. Dedert, J. S. Thompson, J. A. Ibers, and T. J. Marks, Inorg. Chem., 1982, 21, 969.
- 11 E. C. Constable, M. G. B. Drew, and M. D. Ward, J. Chem. Soc., Chem. Commun., 1987, 1600; E. C. Constable, M. D. Ward, and D. A. Tocher, J. Am. Chem. Soc., 1990, 112, 1256 and references therein.